

ARIZONA DEPARTMENT OF ENVIRONMENTAL QUALITY

Stephen A. Owens
Director

1110 West Washington Street • Phoenix, Arizona 85007 (602) 771-2300 • www.azdeq.gov

Assessment of Qualification for Treatment under the Arizona Natural and Exceptional Events Policy for the High Particulate (PM_{10}) Concentration Events in the

Background

Yuma Area on April 11, 2007 and Statewide on April 12, 2007

The Arizona Department of Environmental Quality (ADEO) issues Dust Control Action Forecasts for the Yuma and Phoenix areas as part of the Natural Events Action Plan for these areas. On Tuesday April 10, 2007, in response to an approaching upper level trough and frontal system forecast to pass through the state of Arizona, ADEQ air quality forecasters issued the Yuma and Vicinity Dust Control Action forecast calling for a high risk of exceeding the PM₁₀ the National Ambient Air Quality Standards (NAAQS) in the Yuma area for Wednesday April 11th and Thursday April 12th. In addition to this forecast, a High Wind forecast was issued for Green Valley and a High Pollution Advisory was issued for the Phoenix Metropolitan area for Thursday April 12th in anticipation of strong winds with the capability of transporting coarse particulate matter (see attachments). forecasts/advisories satisfy the requirement in 40 CFR 51.920(a)(1).

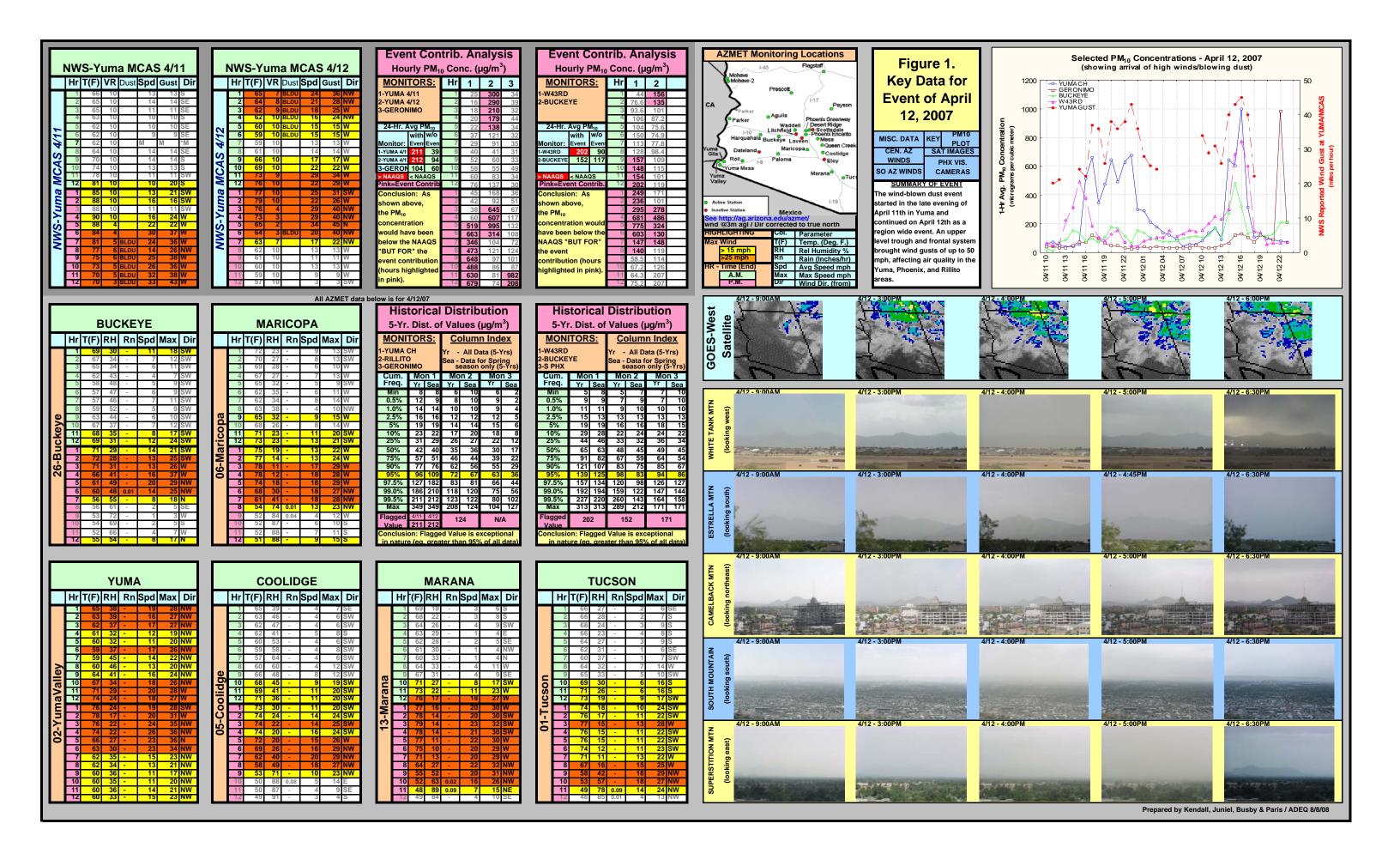
High winds were observed during the evening hours of April 11th in Yuma, into the early morning hours of April 12th, and continuing throughout most of the day over much

of the Phoenix Metro, Pima County and Yuma Areas. The high wind and blowing dust episode was a region-wide event affecting all of these areas. All appropriate state implementation plan (SIP) control measures were in place during the event demonstrating, per 40 CFR 50.1(j), that the event "is not reasonably controllable or preventable."

The event brought significant wind and elevated ambient concentrations of PM_{10} that exceeded the NAAQS at the Yuma Courthouse monitor operated by ADEQ and the Buckeye and West 43^{rd} Ave monitors operated by Maricopa County. In addition, the Rillito filter-based monitor recorded elevated PM_{10} values during a 24-hour period on April 12^{th} due to strong and gusty winds associated with the system. While the 24-hour measurement is below the NAAQS, the value will be flagged, as Rillito is eligible for a Limited Maintenance Plan. The fact that ambient concentrations exceeded or approached the NAAQS satisfies the criteria in 40 CFR 50.1(j) that the event "affects air quality." The following are the key PM_{10} monitor readings for the monitors examined in this report:

Monitor (Operator/Type)	AQS ID	24-hr Av	g PM ₁₀	1-hr N	Max PM ₁₀		e of 1-hr	Flag(A)***		
YUMA AREA		4/11	4/12	4/11	4/12	4/11	4/12	4/11	4/12	
Yuma Courthouse (ADEQ/BAM)	04-027-0004	211	212	679	995**	2300	1600	A or RJ	A or RJ	
Mexico Supersite (ADEQ/BAM)	80-026-8012	177 ^f	330 ^f	935	1000**	2000	1500	Nonef	Nonef	
BUCKEYE AREA		4/1	2		4/12	4/	12	4/12		
Buckeye (Maricopa Co.[MC]/TEOM)	04-013-4011	15	2		486	15	00	A or RJ		
PHOENIX METRO AREA										
West 43 rd Ave (MC/TEOM)	04-013-4009	20	2		775	16	00	A or RJ		
South Phoenix (MC/FRM)	04-013-9812	17	171		N/A		/A	Ао	r RJ	
Greenwood (MC/TEOM)	04-013-3010	11	3		494	16	00	No	one	
Higley (MC/TEOM)	04-013-4006	12	3		520	17	00	No	one	
West Phoenix (MC/TEOM)	04-013-0019	10	3		467	16	00	No	one	
Central Phoenix (MC/TEOM)	04-013-3002	10	7		570	16	00	No	one	
JLG Supersite (ADEQ/TEOM)	04-013-9997	83	3		338	16	00	No	one	
Coyote Lakes	04-013-4014	10	0		270	16	00	None		
PIMA COUNTY AREA										
Rillito (ADEQ/FRM)	04-019-0020	12	4		N/A	N	/A	A or RJ		

^{**} Upper range of instrument. Actual PM_{10} concentrations likely exceeded recorded value Data invalidated due to failed flow check


Type Abbreviations: BAM – Beta-Attenuation Mass Monitor (Continuous monitor) FRM – Federal Reference Method

The preliminary findings from this analysis for the Yuma area were presented at a stakeholders meeting on November 13, 2007. ADEQ presented and discussed this final demonstration for the Yuma area at a stakeholder meeting on May 28, 2008. Separate stakeholder meetings were held for the Rillito and Phoenix Metro areas on May

*** 24-hr PM₁₀ concentration influenced by natural or exceptional event to be flagged

TEOM - Tapered Element Oscillating Microbalance Monitor (Continuous monitor)

15, 2008, and June 11, 2008, respectively. ADEQ has finalized this demonstration, which was made available for public comment from August 11, 2008 through September 10, 2008. Any comments that were received were forwarded to EPA with this demonstration pursuant to 40 CFR 51.14(c)(3)(i).

Assessment under the Technical Criteria Document (TCD)

- 1. Properly qualify and validate the air quality measurement to be flagged. The two-day event occurred during a period that included a scheduled 1-in-6 run day (04/12/07). Only data from the continuous analyzers were examined for April 11th, but filter data were included in the analysis for April 12th. The air quality monitoring data were reviewed by the agencies responsible for operation of the monitors. Data from the Mexico Supersite monitor operated by ADEO were found to be invalid due to a failed flow check that occurred on May 3rd. All data prior to this flow check were invalidated. While the accuracy of these data is suspect, the raw data do indicate elevated levels of PM₁₀. All hourly PM₁₀ readings from Yuma Courthouse were valid for April 11th, as well as readings from Buckeye, West 43rd, and Yuma Courthouse for April 12th. Audits of the analyzers revealed operations were within acceptable tolerance. No local sources were reported as significantly contributing to the air quality episode.
- 2. Review suspected contributing sources. The AzMET and NWS data from the Phoenix metro, southwestern, and southeastern Arizona areas provide a good explanation of the meteorological conditions that were in place during the night of April 11th in Yuma and throughout the entire day of April 12th in Arizona. Strong winds allowed for dry and loose soils to be easily picked up and transported. The Yuma area was the first to be impacted during the evening and overnight hours of April 11th. The event became more widespread during the afternoon of April 12th. Particulate transport is evident in the visibility camera images for the Phoenix Metro area. It can be clearly seen that visibility across the Phoenix Metro area severely degraded throughout the day of April 12th as winds increased. While no such visibility network exists for the Yuma area, such images can be inferred by comparing the meteorological data in Yuma and Phoenix. Additionally, blowing dust reports from multiple NWS stations throughout southwest Arizona and southeast California are proof that strong winds picked up and transported dust and soils in the Yuma area. The plot of hourly PM₁₀ concentration data in the upper right corner of Figure 1, in conjunction with the wind data, confirms the identical timing of the wind and elevated PM₁₀ concentrations. Finally, high winds, blowing dust, and reduced visibility reported at the Yuma Marine Corp Air Station (MCAS) were coincident with elevated PM₁₀ concentrations.
- 3. Examine all air quality monitoring information. Data from all monitors in the network were reviewed. Data from monitors in the affected areas are summarized in the table in the Background section of this assessment. Pursuant to 40 CFR 50.14(c)(3)(iii)(C), the "Historical Distribution"

Tables in Figure 1 has been included to demonstrate that the event is associated with measured concentrations in excess of normal historical fluctuations, including background (i.e., concentrations greater than the 95th percentile). Monitors with elevated PM₁₀ readings, which should be flagged, include the Yuma Courthouse monitor for April 11th and the Yuma Courthouse, Buckeye, West 43rd Ave, and Rillito monitors for April 12th.

- 4. Examine the meteorological conditions before and during the event. The AzMET meteorological data are summarized in Figure 1. The wind data are highlighted yellow if the max wind speed in the hour exceeds 15 mph and orange if it exceeds 25 mph. An upper level trough and passing frontal system caused strong, gusty winds over much of Arizona beginning with Yuma on April 11th and continuing throughout the state on April 12th. As a result, elevated PM₁₀ values occurred first in the southwestern portion of the state (Yuma) during the evening hours of April 11th, followed by elevated PM₁₀ values in the Yuma, Phoenix Metro, and Rillito areas on April 12th.
- 5. Perform a qualitative attribution to emission source(s). All evidence indicates the elevated PM_{10} concentrations in the Phoenix Metro, Rillito, and Yuma areas can be attributed to soil emissions that were transported over a broad area. No source-specific emission allocation is possible based on the data available for analysis. The hourly concentration data do not show any significant source other than the major wind-blown dust event over the two day period. Observational reports of haze and blowing dust from trained officials are evidence that the elevated PM_{10} concentrations were attributed to soil emissions.
- 6. Estimation of Contribution from Source or Event. The primary source appears to be wind-blown dust over a wide geographic region for which there is not an effective or efficient method to estimate the relative contributions from specific sources. The demonstration analysis contained in this report establishes the linkage between the measurements to be flagged and the event, thus satisfying the requirement in 40 CFR 50.14(c)(3)(iii)(B). Pursuant to 40 CFR 50.14(c)(3)(iii)(D), the "Event Contrib. Analysis" Tables in Figure 1 have been included to demonstrate that there would have been no exceedances or violations but for the event (i.e., the contribution during the event overwhelmed the 24-hour average).
- 7. Determination that a Natural or Exceptional Event Contributed To an Exceedance. Based on the evidence collected, the elevated concentrations in Yuma, Maricopa, and Pima Counties were attributed to a high-wind event.

Conclusion

<u>Long-range transport of dust from soils</u>. The region wide elevated PM_{10} event on April 11^{th} - 12^{th} throughout the State of Arizona was the result of long-range transport of dust and soils from high winds that suspended natural soils and soils from areas where Best Available Control Measures

are in place and should be flagged for air quality planning purposes. The "high wind" flag (A or RJ) should be applied to the monitor readings indicated in the table at the beginning of this report, as the monitors would have been below the NAAQS but for the contribution of the event.

Janet Napolitano, Governor Stephen A. Owens, ADEQ Director

YUMA AND VICINITY **DUST CONTROL ACTION FORECAST ISSUED WEDNESDAY, APRIL 11, 2007**

Three-day weather outlook:

A very strong trough of low pressure will push into the southwest U.S. Thursday resulting in a very windy day state-wide Thursday. The strongest winds will be in the late afternoon and evening Thursday into the first part of Friday. Afternoon temperatures in the deserts will be in the low 80s Thursday and Friday, increasing a few degrees Saturday as high pressure returns. The risk of wind-blown dust in Yuma will be HIGH on Thursday, decreasing to "Moderate" Friday, and "Low" by Saturday.

WINDS WIND BLOWN DUST RISK West winds 15-25 mph are expected early, becoming 25-35 mph by the afternoon. **HIGH** Day #1: Thu 04/12/2007 Northwest winds 10-20 mph are expected much of the day. **MODERATE** Day #2: Fri 04/13/2007 Mostly light winds are expected much of the day. LOW Day #3: Sat 04/14/2007

PM-10 & PM-2.5 (PARTICLES)

Description – The term "particulate matter" (PM) includes both solid particles and liquid droplets found in air. Many manmade and natural sources emit PM directly or emit other pollutants that react in the atmosphere to form PM. Particles less than 10 micrometers in diameter tend to pose the greatest health concern because they can be inhaled into and accumulate in the respiratory system. Particles less than 2.5 micrometers in diameter are referred to as "fine" particles and are responsible for many visibility degradations (brown cloud). Particles with diameters between 2.5 and 10 micrometers are referred to as "coarse".

Sources - Fine = All types of combustion (motor vehicles, power plants, wood burning, etc.) and some industrial processes. Coarse = crushing or grinding operations and dust from paved or unpaved roads.

Potential health impacts - PM can increase susceptibility to respiratory infections and can aggravate existing respiratory diseases, such as asthma and chronic bronchitis.

<u>Units of measurement</u> – Micrograms per cubic meter (ug/m3)

Averaging interval – 24 hours (midnight to midnight).

Reduction tips - Stabilize loose soils, minimize travel on dirt roads, utilize tarps on haul trucks, limit use of leaf-blowers, and on high-wind days reduce outdoor activities.

CKR 05/09/2005

Janet Napolitano, Governor Stephen A. Owens, ADEQ Director

MARICOPA COUNTY DUST CONTROL ACTION FORECAST

ISSUED WEDNESDAY, APRIL 11, 2007

Three-day weather outlook:

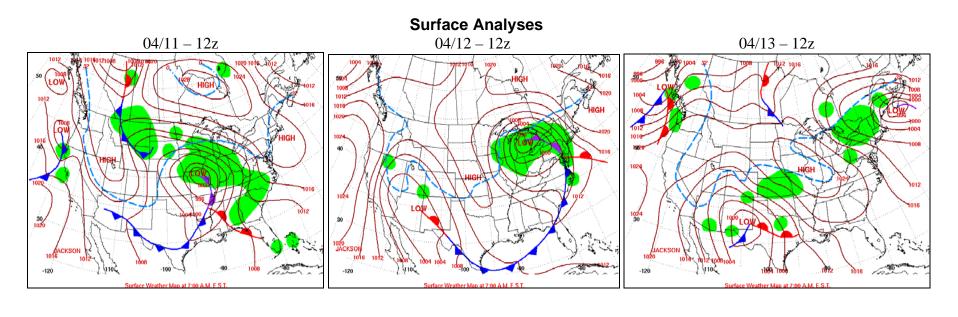
A very strong trough of low pressure will push into the southwest U.S. Thursday resulting in a very windy day state-wide Thursday. The strongest winds will be in the late afternoon and evening Thursday into the first part of Friday. Afternoon temperatures in the deserts will be in the low 80s Thursday and Friday, increasing a few degrees Saturday as high pressure returns. The risk of exceeding the 24-hr PM-10 health standard in Phoenix due to blowing dust will be HIGH on Thursday, decreasing to "Moderate" Friday, and "Low" by Saturday.

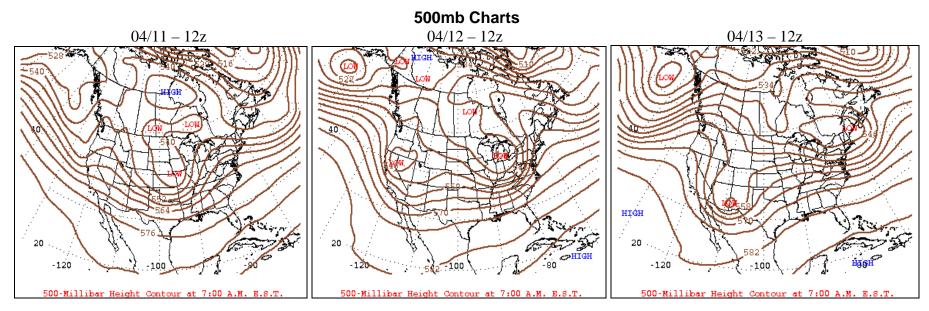
RISK FACTORS

	WINDS		STAGNATION		RISK LEVEL
Day #1: Thu 04/12/2007	Southwest winds 15- 25 mph are expected early, becoming 20-30 mph with gusts near 40 mph at times	+	Little to no stagnation is expected.	=	HIGH
Day #2: Fri 04/13/2007	Southwest winds 5-15 mph are likely much of the day.	+	Somewhat stagnant conditions are expected early, with improvement by the afternoon.	=	MODERATE
Day #3: Sat 04/14/2007	East winds 5-15 mph are likely early, becoming southwest by the afternoon.	+	Somewhat stagnant conditions are expected early, with some improvement by the afternoon.	=	LOW

To review the complete air quality forecast for the Phoenix metropolitan area visit www.azdeq.gov or call 602-771-2367 for recorded forecast information.

Janet Napolitano, Governor Stephen A. Owens, ADEQ Director


GREEN VALLEY AND VICINITY DUST RE-ENTRAINMENT RISK WIND FORECAST ISSUED WEDNESDAY, APRIL 11, 2007


Three-day weather outlook:

A very strong trough of low pressure will push into the southwest U.S. Thursday resulting in a very windy day state-wide Thursday. The strongest winds will be in the late afternoon and evening Thursday into the first part of Friday. Afternoon temperatures in the deserts will be in the low 80s Thursday and Friday, increasing a few degrees Saturday as high pressure returns. The risk of re-entrained dust in Green Valley will be **HIGH** on Thursday, decreasing to "Low" by Friday and Saturday.

WINDS RE-ENTRAINMENT RISK South winds 10-15 mph are expected early, becoming southwest 25-35 mph **HIGH** Day #1: Thu 04/12/07 with gusts near 45 mph at times. Southwest winds 5-10 mph are expected early, becoming LOW northwest 10-15 mph. Day #2: Fri 04/13/07 No significant winds are expected. LOW Day #3: Sat 04/14/07

Weather Charts for April 11-13, 2007

U.S. Department of Commerce National Oceanic & Atmospheric Administration

QUALITY CONTROLLED LOCAL CLIMATOLOGICAL DATA (may be updated) HOURLY OBSERVATIONS TABLE YUMA MCAS (03145) YUMA, AZ (04/2007) National Climatic Data Center Federal Building 151 Patton Avenue Asheville, North Carolina 28801

Elevation: 213 ft. above sea level

Latitude: 32.650 Longitude: -114.617 Data Version: VER2

		,																				
Date	Time (LST)	Station Type	Sky Conditions	Visibility (SM)	Weather Type	В	Ory Sulb emp	В	Vet ulb emp	P	ew oint emp	Rel Humd	Wind Speed	Wind Dir	Wind Gusts	Station Pressure	Press Tend	Net 3-hr Chg	Sea Level Pressure	Report Type	Precip. Total	Alti- meter
	(201)	Турс	Conditions	(Civi)	Турс	(F)		(F)	(C)	(F)		%	(MPH)	"	(MPH)	(in. hg)	Tona	(mb)	(in. hg)	Турс	(in)	(in. hg)
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
12	0051	5	CLR	7.00	BLDU	65	18.3	53	11.5	41	5.0	42	24	300	36	29.47			29.69	AA		29.70
12	0151	5	CLR	8.00	BLDU	64	17.8	51	10.8	39	3.9	40	21	300	28	29.48	3	012	29.70	AA		29.71
12	0251	5	CLR	9.00	BLDU	62	16.7	50	9.8	37	2.8	40	18	290	25	29.47			29.69	AA		29.70
12	0351	5	CLR		BLDU	62			8.9	32	0.0	32		300		29.48				AA		29.71
12	0451	5	CLR	10.00	BLDU	60	15.6	47	8.1	31	-0.6	34		290			3	003		AA		29.72
12	0551	5	CLR	10.00	BLDU	59			8.5	34	1.1	39		290		29.50				AA		29.73
12	0651	5	FEW200	10.00		59	15.0	49	9.3	38	3.3	46	13	290		29.51				AA		29.74
12	0751	5	FEW200	10.00		61			10.3	40	4.4	46		280			3	010		AA		29.75
12	0851	5	FEW200	10.00		66		53	11.5	40	4.4	39		290		29.52				AA		29.75
12	0951	5	SCT200	10.00		69			11.8	38	3.3	32		270		29.52				AA		29.75
12	1051	5	SCT200	9.00		73			12.5	37	2.8	27		260			8	007		AA		29.73
12	1151	5	BKN200	10.00		76			12.8	35	1.7	23		250		29.45				AA		29.68
12	1251	5	FEW060 SCT200	10.00				55	12.7	33	0.6	20		230		29.41				AA		29.64
12	1351	5	FEW060 SCT100 SCT200	10.00		79			12.9	32	0.0	18		260			6	040	29.59	AA		29.61
12	1443	5	FEW001	4.00				55	12.8	36	2.0	24		290		29.37			М	SP		29.60
12	1451	5	SCT060 SCT100 BKN200	4.00		76			13.0	36	2.2	23		300		29.37			29.59	AA		29.60
12	1531	5	FEW001	4.00		75		54	12.0	32	0.0	21		300		29.38			М	SP		29.61
12	1551	5	SCT060 SCT100 BKN200	3.00		73			11.9	34	1.1	24		310		29.39			29.60	AA		29.62
12	1638	5	BKN060	1.50		64			9.0	30	-1.0	28		350		29.44			М	SP		29.67
12	1651	5	BKN060	1.50		65			9.4	31	-0.6	28		340			3	025	29.67	AA		29.68
12	1741	5	BKN060		BLDU	64	18.0		9.0	30	-1.0	28		310		29.48			М	SP		29.71
12	1749	5	BKN060		BLDU	64	18.0		9.0	30	-1.0	28		320		29.48				SP		29.71
12	1751	5	SCT060	7.00	BLDU	65	18.3	49	9.4	31	-0.6	28	26	310	40	29.48			29.70	AA		29.71
12	1851	5	SCT100	7.00		63	17.2	50	9.7	35	1.7	35		300	22	29.47				AA		29.70
12	1951	5	FEW100	10.00		62	16.7	49	9.4	35	1.7	37	13	280		29.49	1	014	29.72	AA		29.72
12	2051	5	FEW100	10.00		61	16.1	49	9.2	35	1.7	38	11	280		29.52			29.73	AA		29.75
12	2151	5	FEW100	10.00		60	15.6	48	8.7	34	1.1	38	13	290		29.54			29.76	AA		29.77
12	2251	5	CLR	10.00		59	15.0	47	8.5	34	1.1	39	9	270		29.57	3	024	29.78	AA		29.80
12	2351	5	CLR	10.00		57	13.9	47	8.1	35	1.7	44	3	220		29.58			29.80	AA		29.81

Dynamically generated Tue Oct 30 10:06:54 EST 2007 via http://cdo.ncdc.noaa.gov/qclcd/QCLCD

U.S. Department of Commerce National Oceanic & Atmospheric Administration

QUALITY CONTROLLED LOCAL CLIMATOLOGICAL DATA (final) HOURLY OBSERVATIONS TABLE IMPERIAL COUNTY AIRPORT (03144) IMPERIAL , CA (04/2007)

National Climatic Data Center Federal Building 151 Patton Avenue Asheville, North Carolina 28801

Elevation: -59 ft. below sea level

Latitude: 32.834 Longitude: -115.579 Data Version: VER2

Date	Time (LST)	Station Type	Sky Conditions	Visibility (SM)	Weather Type	Е	Dry Bulb Temp		Wet Bulb Temp		Dew Point Femp Rel Humo %		Wind Speed (MPH)	Wind Dir	Wind Gusts (MPH)	Station Pressure (in. hg)	Press Tend	Net 3-hr Chg (mb)	Sea Level Pressure (in. hg)	Report Type	Precip. Total (in)	Alti- meter (in. hg)
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
12 12 12 12 12 12 12 12 12 12 12 12 12 1	0053 0153 0253 0353 0453 0653 0753 0853 1053 1153 1253 1348 1351 1407 1425 1440 1447 1453 1553 1653 1753 1853 1953	12 12 12 12 12 12 12 12 12 12 12 12 12 1	4 CLR	7.00 10.00 9.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 11.75 1.75 1.25	HZ HZ HZ HZ HZ HZ HZ HZ HZ HZ HZ	63 62 61 60 60 65 69 71 71 73 77 72 72 72 72 72 72 66 65 64 64 64 64 67 63 62 62 61	17.2 16.7 16.1 15.6 15.6 15.6 21.7 21.7 22.8 25.0 23.9 22.0 22.0 22.0 22.0 19.0 18.0 18.0 17.8 19.4 17.2 16.7	50 49 50 50 51 51 53 54 55 55 55 57 56 53 53 53 52 55 55 55 55 55 55 55 55 55 55 55 55	9.7 9.5 9.8 10.0 10.5 12.0 12.5 12.7 13.8 13.4 11.7 11.4 11.3 10.7 11.5 10.4 10.2 10.3 9.9 9.5	35 38 40 41 42 41 39 39 40 39 39 33 32 33 32 33 32 33 37 37 36 37 38 38 39 40 39 39 40 39 39 40 39 39 40 40 40 40 40 40 40 40 40 40 40 40 40	1.7 1.7 1.7 1.7 3.3 4.4 5.0 5.6 5.0 3.9 4.4 3.9 3.9 1.0 0.0 0.6 0.1 0.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	35 37 43 48 50 52 42 42 33 29 26 27 25 23 24 23 20 19 37 42 40 37 36 28 37 33 32	29 29 20 20 20 14 16 15 33 34 29 29 29 31 23 28 22 24 37 36 33 22 22 24 37 36 36 31 31 31 32 32 32 32 32 32 32 32 32 32 32 32 32	260 270 260 260 260 270 270 270 250 240 250 240 310 310 310 310 350 350 350 350 350 280 270 270 260	23 39 34 33 29 23 39 47 38 37 38 37 38 39 41 43 42 43 44 45 40 23 30 32	29.77 29.77 29.78 29.79 29.79 29.81 29.81 29.80 29.76 29.71 29.70 29.71 29.70 29.71 29.72 29.71 29.72 29.74 29.76 29.76 29.78 29.78 29.78 29.78 29.78	8 3 8 6	005 008 006 018 019	29.71 29.71 29.72 29.73 29.73 29.75 29.75 29.75 29.75 29.65 29.65 29.66 M M M 29.66 M M M 29.70 M M M 29.73 29.71 29.73 29.73 29.73 29.75	AA AAA AAA AAA AAA AAA AAA AAA SP AAP SP AAAAAAAA	T	23 29.71 29.71 29.72 29.73 29.73 29.75 29.75 29.75 29.76 29.65 29.65 29.64 29.66 29.66 29.66 29.66 29.66 29.68 29.70 29.70 29.72 29.72 29.72 29.72 29.72 29.73 29.72 29.73 29.73 29.76 29.73
12 12 12	2253		CLR CLR CLR	10.00 10.00 10.00		60 60 61	15.6 15.6 16.1	46			0.0 -2.8 -2.8	35 28 27		260 280 290		29.85 29.87 29.89	1	019		AA AA AA		29.79 29.81 29.83

Dynamically generated Tue Oct 30 09:51:45 EST 2007 via http://cdo.ncdc.noaa.gov/qclcd/QCLCD

U.S. Department of Commerce National Oceanic & Atmospheric Administration

QUALITY CONTROLLED LOCAL CLIMATOLOGICAL DATA (may be updated) HOURLY OBSERVATIONS TABLE NAF (23199) EL CENTRO, CA (04/2007) National Climatic Data Center Federal Building 151 Patton Avenue Asheville, North Carolina 28801

Elevation: -43 ft. below sea level

Latitude: 32.817 Longitude: -115.667 Data Version: VER2

Date	Time (LST)	Station Type	Sky Conditions	Visibility (SM)	Weather Type	В	Ory Sulb emp (C)	В	Vet ulb emp (C)			Rel Humd %	Wind Speed (MPH)	Wind Dir	Wind Gusts (MPH)	Station Pressure (in. hg)	Press Tend	Net 3-hr Chg (mb)	Sea Level Pressure (in. hg)	Report Type	Precip. Total (in)	Alti- meter (in. hg)
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
12 12 12 12 12 12 12 12 12 12 12 12 12 1	0056 0156 0238 0256 0356 0456 0656 0756 0856 1056 1156 1256 1356 1440 1444 1454 1454 1454 1456 1606 1620 1656 1756 1956	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	CLR CLR FEW005 CLR CLR CLR CLR CLR CLR CLR FEW060 FEW060 SCT200 FEW060 SCT200 FEW060 SCT200 FEW060 SCT200 FEW060 SCT200 FEW060 SCT200 SCT050 SCT200 SCT050 SCT200 SCT055 BKN090 BKN041 BKN090 BKN041 BKN028 OVC090 BKN009 OVC014 BKN009 OVC014 BKN006 OVC012 BKN012 FEW010 SCT019 FEW010 SCT010 FEW010 SCT010 CLR CLR CLR	5.00 10.00 3.00 7.00 10.00 10.00 10.00 10.00 10.00 9.00 10.00 5.00 6.00 4.00 1.50 0.75 0.75 1.25 2.00 3.00 2.50 1.75 2.00 4.00 10.00 10.00 10.00	BLDU BLDU BLDU BLDU BLDU BLDU BLDU BLDU	73 73 73 73 73 73 73 73 73 73 74 66 66 64 63 63 64 65 63 64 65	17.2 16.1 16.0 15.6 15.6 15.6 16.1 18.9 20.6 21.7 22.2 23.3 24.4 22.8 23.0 22.0 23.0 23.0 19.0 18.0 17.2 17.0 18.0 17.2 17.8 16.7	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9.5 9.4 9.6 9.8 10.0 10.2 11.5 12.0 12.1 13.1 13.4 11.6 11.0 11.0 11.0 11.7 11.7 10.4 10.3 10.6 10.2 10.6 10.9	36 37 39 40 41 42 40 39 37 41 38 38 33 32 30 30 28 41 41 41 37 38 37 38 41 41 41 42 43 49 49 49 49 49 49 49 49 49 49 49 49 49	1.1 2.2 3.0 3.9 4.4 5.6 5.6 4.4 3.9 2.8 5.0 3.3 3.3 3.3 3.3 0.6 0.0 -1.0 -2.0 -2.0 -2.0 -3.0 3.3 4.0 2.8 4.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	34 39 41 46 48 550 33 34 29 33 22 21 19 19 18 19 40 40 37 40 41 36 36 37 37	29 32 31 30 26 24 117 32 36 31 39 33 32 28 23 33 30 31 31 33 31 31 32 32 33 33 31 31 32 31 32 32 33 33 31 31 31 31 31 31 31 31 31 31 31	270 270 260 260 250 260 260 260 260 240 240 250 260 300 320 310 290 340 340 350 360 350 360 320 270 260 290 290 290 290 290 290 290 290 290 29	45 43 39 38 37 28 38 41 38 49 48 39 38 40 49 52 41 41 38 49 44 46 46 25 38 26 32	29.78 29.77 29.77 29.78 29.79 29.79 29.80 29.81 29.79 29.78 29.70 29.69 29.69 29.71 29.71 29.71 29.71 29.71 29.72 29.72 29.72 29.72 29.73 29.76 29.76 29.77 29.78 29.78 29.78 29.78 29.78 29.78 29.78 29.78 29.78 29.78 29.78 29.78 29.79 29.78	3 1 8 5	001	29.78 29.78 29.78 29.78 29.79 29.80 29.80 29.81 29.79 29.70 29.70 29.70 29.71 M M M M M M M M M M M M M M M M M M 29.77 M 29.78 M M 29.78 M 29.78 M M 29.78 M 29.78 M M 29.78 M 29.78 M 29.78 M M 29.78 M 29.78	AAASPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Т	29.74 29.73 29.73 29.74 29.75 29.75 29.75 29.75 29.75 29.75 29.66 29.65 29.65 29.67 29.67 29.67 29.67 29.68 29.68 29.69 29.70 29.72 29.73 29.72 29.74 29.74 29.74 29.74 29.74 29.74 29.73 29.75 29.75 29.75
12 12 12 12	2056 2156 2256 2356	5 5	CLR CLR CLR CLR CLR	10.00 10.00 10.00 10.00		62 61 64 63		46 47		28 24	-2.2 -4.4	32 29 22 24	14	260 270 290 290		29.83 29.84 29.86 29.88	1	017	29.83 29.84 29.86 29.88	AA AA AA AA		29.79 29.80 29.82 29.84

Dynamically generated Tue Oct 30 09:44:08 EST 2007 via http://cdo.ncdc.noaa.gov/qclcd/QCLCD